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Introducción  
 

Actualmente contamos con múltiples investigaciones concernientes al aprendizaje de las 

matemáticas, una de las razones es el aumento en número de estudiantes de todas las áreas 

que cursan matemáticas como consecuencia de los cambios que los gobiernos establecen; 

empero los objetivos que señalan están lejos de cumplirse. Las reformas se suceden unas a 

otras generando la sensación de que el fondo de los problemas no se ha afrontado 

realmente.  

Tomemos como ejemplo la experiencia de los a¶os 70ôs, la famosa ñreforma de las 

matem§ticas modernasò en donde el punto nodal estuvo en la introducci·n del rigor ligado 

a la consideraci·n del ñalumno - ni¶oò conllev· a que los reformadores la impulsaran sobre 

dos supuestos ilusorios: 

¶ Primero, la ilusión lírica. Las ciencias y las matemáticas podrían introducirse poco a 

poco sobre una espl®ndida arquitectura simple y elegante. Esta ñbellezaò era escondida 

a las j·venes generaciones por una ñmalaò pedagog²a que les ocultaba su potencia. 

Luego entonces, la profunda estructura  de la ciencia se presentaría a los estudiantes 

tan pronto fuese posible y todo iría mejor. 

¶ Enseguida la ilusión romántica. Concerniente a la manera en cómo aprenden los 

alumnos. Por analog²a, ellos son como la planta que ñcrece solaò si se le coloca en un 

ñbuen ambienteò, es decir, el movimiento espontaneo de la evolución cognitiva del 

estudiante dirige y se antepone al conocimiento científico. Las dificultades se atribuyen 

al arca²smo pedag·gico que cultiva ñla ruptura con la vida realò, el ñformalismoò y el 

ñdogmatismoò y por tanto criticado sin consideraci·n.  

Los resultados son bien conocidos y puede desprenderse como lección histórica, que 

siempre que las reformas implementadas se basan en presupuestos a priori, lo que sucede 

más frecuentemente de lo que se piensa, han provocado grandes decepciones. Producto del 

fracaso de la reforma de las matemáticas modernas, surgió otro punto de vista ñfatalistaò de 

retorno al pasado como el movimiento norteamericano ñback to basicsò. Otro aspecto que 

las reformas no suelen considerar es el cómo aprenden los estudiantes y el cómo educar con 

equidad a una población indiscutiblemente heterogénea.  

La matemática educativa nace como disciplina científica sobre presupuestos radicalmente 

opuestos a otras aproximaciones que conciernen a la enseñanza: la voluntad (y la 

afirmación de la posibilidad) de abordar razonablemente, sistemáticamente, científicamente 

y con especificidad los fenómenos de aprendizaje de las matemáticas. Arriesgando una 

definición uno podría decir que la matemática educativa es la ciencia que estudia, para un 

campo particular (las matemáticas), los fenómenos de su aprendizaje, las condiciones de la 

transmisi·n de la ñculturaò propia de una instituci·n (la cient²fica) y las condiciones de la 
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adquisición de conocimientos del que aprende.    

Un punto de inicio en esta problemática es la reflexión sobre los saberes. Es importante 

señalar que los conocimientos mediante los cuales se establecen las relaciones didácticas no 

son objetos muertos que el profesor ñtransmiteò al alumno que los ñrecibir§ò y se los 

ñapropiar§ò. Por el contrario, la matem§tica educativa los concibe como objetos vivientes 

sujetos de evolución y cambio conforme la sociedad en donde ellos nacen o se enraízan. 

Particularmente, el estudio de las relaciones que el estudiante establece con los saberes que 

le son presentados,  relaciones en sí mismas de naturaleza eminentemente móviles, es el 

centro de una reflexión sobre las condiciones y la naturaleza de los aprendizajes. Ello 

conduce a una aproximaci·n opuesta a la ñpedagog²a generalò, en tanto que ®sta ofrece 

reglas de aprendizaje y de la educación independiente de los contenidos enseñados. Al 

menos para las disciplinas científicas y las matemáticas, cuyos contenidos son altamente 

estructurados, es poco probable que un conocimiento pertinente pueda construirse para 

explicar los fenómenos de enseñanza dejando de lado los saberes de referencia. 

Esto último induce un estudio epistemológico para entender cuáles fueron las causas que 

posibilitaron la generación de los saberes a fin de articularlos pertinentemente en el aula. 

Pero como ya señalamos anteriormente el fenómeno educativo es eminentemente social y 

compete globalmente a la cultura en la que se sucede, por tanto a los ñpuntos de vistaò 

específicos del entorno social en el que se desarrolla, por lo que de manera natural, la 

investigación en matemática educativa se desarrolla bajo el abrigo de diferentes 

paradigmas.    

En este escrito nos proponemos hacer una revisión de nuestros resultados de investigación 

en el tema de precálculo, con el fin de posibilitar al profesor el conocimiento de las 

herramientas indispensables que le permitan realizar pertinentemente el diseño e 

implementación de situaciones de aprendizaje en el aula de matemáticas.  Para ello 

iniciamos con una breve descripción de la teoría de situaciones didácticas, que usamos en 

nuestros diseños. Ello sin pretender exhaustividad ni profundidad en la teoría; pero 

mostrando los elementos que consideramos esenciales. Al final damos las referencias 

bibliográficas que permitirán un estudio con mayor profundidad. 

Enseguida haremos una presentación de nuestros resultados de manera resumida precisando 

tres aspectos importantes de nuestros diseños destinados a la adquisición de un lenguaje 

gráfico, a saber, operaciones gráficas, resolución gráfica de desigualdades y construcción 

de funciones. 

Con ello creemos que el lector estará en condiciones de apropiarse de una visión global del 

quehacer de investigación en Matemática Educativa junto con su aplicación dentro del aula 

de matemáticas con el fin de diseñar e implementar, pertinentemente, situaciones de 
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aprendizaje en la clase de matemáticas a propósito del tema que aquí discutiremos: el curso 

de precálculo. 

Breve esbozo de la Teoría de Situaciones Didácticas 
 
La matemática educativa es la disciplina que estudia, fundamentalmente, los fenómenos 

que se producen en la escuela en el proceso de aprendizaje de las matemáticas. La 

evolución de la didáctica de las matemáticas de arte a ciencia, ha ido modificando la 

manera en cómo se entienden los hechos didácticos. Desde la concepción de que la 

didáctica es un arte, poseído por unos cuantos y que hace que la función del alumno, sea 

dejarse moldear  por el artista, para pasar luego a una etapa clásica, donde el aprendizaje 

era considerado como un proceso cognitivo. 

La didáctica de las matemáticas es considerada como un caso particular, de lo que podría 

denominarse como didáctica general, en donde las explicaciones de cómo aprende en 

general una persona, podían ser aplicadas al aprendizaje de las matemáticas. (Gascón J., 

1998 p.10), señala los dos siguientes aspectos, como característicos del enfoque clásico en 

didáctica de las matemáticas: 

¶ Toma como problemática didáctica, una ampliación limitada de la problemática 

espontánea del profesor. Menciona como ejemplos de esto, los conocimientos 

previos de los alumnos, el problema de la motivación de los alumnos para el 

aprendizaje, los instrumentos tecnológicos de la enseñanza, la diversidad, cómo 

enseñar a resolver problemas, cómo evaluar, etc. 

¶ Presentar el saber didáctico como un saber técnico, en el sentido de aplicación de 

otros saberes más fundamentales, importados de otras disciplinas 

Agrega además, que desde el punto de vista clásico, la didáctica de las matemáticas, 

consiste en proporcionarle al profesor los  recursos  profesionales para llevar su trabajo de 

forma eficiente. Desde esta perspectiva, enseñar y aprender matemáticas,  son nociones 

transparentes y no cuestionables. El análisis se centra en el alumno o el profesor, 

condicionándolo fuertemente a los procesos psicológicos asociados a la enseñanza y el 

aprendizaje. Interpreta el saber didáctico a un saber técnico, renunciando así a construir la 

didáctica de las matemáticas como un saber científico. 

Para construir la didáctica de las matemáticas como saber científico, se requeriría un 

modelo de la matemática escolar, así como un modelo de la actividad matemática y un 

modelo del proceso de enseñanza-aprendizaje de las matemáticas. La Teoría de Situaciones 

Didácticas (TSD) parte de principios diametralmente opuestos a la concepción clásica, pues 

entiende que: 
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¶ ñSaber matem§ticasò no es solamente saber definiciones y teoremas para reconocer 

la ocasi·n de utilizarlos y de aplicarlos, es ñocuparse de problemasò en un sentido 

amplio que incluye encontrar buenas preguntas tanto como encontrar soluciones. 

Una buena reproducción, por parte del alumno, de la actividad matemática exige 

que éste intervenga en la actividad matemática, lo cual significa que formule 

enunciados y pruebe proposiciones, que construya modelos, lenguajes, conceptos y 

teorías, que los ponga a prueba e intercambie con otros, que reconozca los que están 

conformes con la cultura matemática y que tome los que le son útiles para continuar 

su actividad.  

¶ ñEnse¶ar un conocimiento matem§tico concretoò es, en una primera aproximaci·n, 

hacer posible que los alumnos desarrollen con dicho conocimiento una actividad 

matemática en el sentido anterior. El profesor debe imaginar y proponer a los 

alumnos situaciones matemáticas que ellos puedan vivir, que provoquen la 

emergencia de genuinos problemas matemáticos y en las cuales el conocimiento en 

cuestión aparezca como una solución óptima a dichos problemas, con la condición 

adicional de que dicho conocimiento sea construible por los alumnos.  

Con el surgimiento de la teoría de situaciones, Brousseau, junto con otros investigadores, se 

dieron cuenta de la necesidad para la didáctica, de utilizar un modelo propio de la actividad 

matemática. En esto consiste precisamente, el principio metodológico fundamental de la 

teoría de situaciones: definir un <<conocimiento matemático>> mediante una  

<<situación>>, esto es, por un autómata que modela los problemas que únicamente este 

conocimiento permite resolver de forma óptima (Brousseau, 1994). 

La teoría de situaciones adopta un enfoque sistémico ya que considera a la didáctica de las 

matemáticas como el estudio de las interacciones entre un saber, un sistema educativo y los 

alumnos con objeto de optimizar los modos de apropiación de este  saber por el sujeto 

(Brousseau, 1998). 
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Chevallard (1991) denomina a este esquema teórico, como "sistema didáctico". El entorno 

inmediato del sistema did§ctico es el ñsistema de ense¶anzaò, que est§ constituido por un 

conjunto diverso de dispositivos que permiten operar a los distintos sistemas didácticos. 

Alrededor de este sistema de enseñanza se encuentra el entorno social, que puede 

caracterizarse por la presencia de padres, académicos, y las instancias políticas. En el 

entorno de lo que Chevallard denomina el sistema de enseñanza en estricto sensu, hay un 

ñsitioò donde se piensa el sistema did§ctico, denominado noosfera. En la noosfera, los 

representantes del sistema de enseñanza, se encuentran directa o indirectamente con los 

representantes de la sociedad. Esta versión simplificada, del funcionamiento escolar, puede 

desarrollar formas muy complejas de funcionamiento.  

Un contenido de saber que ha sido designado como saber a enseñar, sufre a partir de 

entonces un conjunto de transformaciones adaptativas que van a hacerlo apto para ocupar 

un lugar entre los objetos de enseñanza. El trabajo que transforma de un objeto de saber a 

enseñar en un objeto de enseñanza, es denominado la transposición didáctica (Chevallard, 

1991, p.45.) La noosfera, es el centro operacional del proceso de transposición. Allí se 

produce todo conflicto entre sistema didáctico y entorno. 

Luego de que en el sistema didáctico, se ha determinado un saber a enseñar, este es sin 

lugar a dudas un saber transpuesto, despersonalizado, descontextualizado. Constituye la 

labor del profesor proceder en sentido contrario al productor de tal conocimiento,  debe 

contextualizar y repersonalizar el saber: busca situaciones que den sentido a los 

conocimientos por enseñar (Brousseau, 1999). El estudiante que se ha apropiado de los 

conocimientos, procede a descontextualizar y despersonalizar para poderlos usar. 

Un supuesto básico de la TSD es: que el alumno aprende, adaptándose a un medio que es 

factor de contradicciones, de dificultades, de desequilibrios... Este saber, fruto de la 

adaptación del alumno, se manifiesta por respuestas nuevas que son la prueba del 

aprendizaje (Brousseau, 1999). Este supuesto, se basa en principios de la psicología 

genética y de la psicología social y que se podrían resumir en: El aprendizaje se apoya en la 

acción. La adquisición, organización e integración de los conocimientos pasa por estados 

transitorios de equilibrio y desequilibrio, apoyados en los procesos de asimilación y 

acomodación1. Los aprendizajes previos de los alumnos deben ser tenidos en cuenta para 

construir los nuevos conocimientos y para superar los obstáculos: se conoce en contra de 

los conocimientos anteriores2. Los conflictos cognitivos entre miembros de un mismo 

grupo social pueden facilitar la adquisición del conocimiento3 (Ruiz, 2000). 

                                                 
1 Estos, constituyen elementos básicos de la obra de Piaget 
2 Esta afirmación constituye una idea fundamental de la epistemología de Bachelard (1986). 
3 Idea básica de la psicología social genética, representada por los trabajos de la escuela de Ginebra tales 

como Mungny (1986). 
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La concepción moderna de la enseñanza va por tanto a pedir al maestro que provoque en 

los alumnos las adaptaciones deseadas, con una elección acertada de los problemas que le 

propone.  

Tomando una situación matemática, como elemento primario, podemos plantearnos cómo 

transformarla en una situación de aprendizaje, para ello, debemos cerciorarnos de que la 

respuesta inicial del alumno, no constituya la respuesta ñcorrectaò, sino que se vea obligado 

a hacer modificaciones a sus conocimientos previos. Uno de los factores principales de 

estas situaciones de aprendizaje, lo constituye el hecho de que las respuestas que produce el 

alumno, sean respuestas provocadas por las exigencias del medio no, a  los deseos del 

profesor; al, logro de este hecho se le llama devolución de la situación por el profesor. La 

devolución no se realiza sobre el objeto de enseñanza sino sobre las situaciones que lo 

caracterizan (Brousseau, 1994).  

Se llama situación adidáctica, a una situación matemática específica de dicho conocimiento 

tal que, por si misma, sin apelar a situaciones didácticas y en ausencia de toda indicación 

intencional, permita o provoque un cambio de estrategia en el alumno. Este cambio debe 

ser (relativamente) estable en el tiempo y estable respecto a las variables de la situación. La 

forma de provocar este cambio suele provenir de ciertas características de la situación 

adidáctica que hacen que fracasen las estrategias espontáneas (Chevallard, Bosch, Gascón, 

1997). 

Se llamará variable didáctica, de la situación adidáctica, a aquellos elementos de la 

situación que al ser modificados permiten engendrar tipos de problemas a los que 

corresponden diferentes técnicas o estrategias de solución. El empleo que hace el profesor 

de situaciones adidácticas, con una determinada intención didáctica, constituyen lo que se 

denomina situación didáctica. La situación didáctica comprende las situaciones adidácticas, 

un cierto medio y el profesor, que tiene el propósito de que los alumnos aprendan un 

determinado conocimiento matemático.  

El medio se constituye así en un elemento fundamental, dentro de la noción de situación 

didáctica, ya que está constituido por todos aquellos objetos con los que el estudiante está 

familiarizado y que puede emplear con seguridad y sin cuestionamientos, así como todas 

aquellas ayudas que se le proporcionan con el fin de que pueda lograr el objetivo deseado. 

Es muy importante notar que en tal medio se encuentra el profesor. Este hecho será de gran 

importancia en el momento de analizar la función del profesor en la actividad de 

reproducción de situaciones didácticas. 

En la relación didáctica, maestro-alumno, se erige explícitamente o implícitamente, un 

acuerdo de cuáles son las responsabilidades de cada uno de ellos. Es un sistema de 

relaciones recíprocas análogas a las de un contrato, pero a diferencia de los contratos 

sociales, éste estará determinado no por reglas previas a la relación, sino por la naturaleza 
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del conocimiento matemático buscado. Este contrato didáctico evoluciona conforme 

evoluciona la relación del estudiante con la situación adidáctica. El estudiante puede 

resistirse a la devolución de la situación, o experimentar problemas, es entonces que, las 

acciones del profesor, traducidas a la negociación del contrato, experimentan evolución.  

Finalmente, como hemos dicho anteriormente, las situaciones adidácticas, están 

caracterizadas por un conocimiento específico; es posible establecer correspondencias entre 

estos tipos de conocimientos, los modos de funcionamiento de dichos conocimientos y los 

respectivos intercambios del alumno con el medio, que éstos provocan. Con base a estas 

correspondencias, pueden ser definidas de la siguiente manera:  

¶ Situación de acción, que corresponde a un modelo implícito, que sugiere una 

decisión o empleo de un algoritmo y que provoca intercambio de informaciones no 

codificadas. El modelo de acción le permite al alumno mejorar su modelo implícito, 

son acciones que aún no le permiten formular, probar, ni formular una teoría. 

¶ Situación de formulación, la forma de conocimiento, corresponde a un lenguaje  

que le permite la producción de mensajes y por ende el intercambio de 

informaciones codificadas según ese lenguaje. En este tipo de situaciones el 

estudiante intercambia y comunica sus exploraciones, a sus compañeros o profesor 

y ya puede comunicarlos en un lenguaje matemático, así sea muy incipiente. 

¶ Situación de validación, que toma la forma de conocimiento de una teoría, que le 

permite construir sus propios juicios, pudiendo intercambiar juicios. En esta 

situación, el estudiante debe demostrar porqué el modelo que construyó, es válido, a 

fin de convencer a otros de ello. 

  

Ejemplo de situación  

La teoría de las situaciones postula que cada conocimiento concreto debe poder 

ñdeterminarseò (en el sentido indicado) mediante una o m§s situaciones matem§ticas, cada 

una de las cuales recibe el nombre de situación específica para dicho conocimiento.  

Una situación de aprendizaje es específica de un conocimiento concreto si cumple las dos 

condiciones siguientes: 

 Es comunicable sin utilizar dicho conocimiento. 
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¶ La estrategia óptima del juego formal4 asociado a la situación matemática se obtiene 

a partir de la estrategia de base (que consiste en jugar al azar, aunque respetando las 

reglas del juego) utilizando el conocimiento en cuestión 

Existe una situación matemática modelizable (Brousseau, 1994) mediante el juego 

denominado ñLa carrera al 20ò:  Se trata de un juego de dos jugadores en el que el jugador 

que empieza jugando debe decir un número x menor que 20 y el contrincante debe decir un 

número 1 o 2 unidades mayor:  x + m (con m < 3). Gana el jugador que dice 20 por primera 

vez. El conocimiento matem§tico asociado a la ñcarrera al 20ò es la divisi·n eucl²dea: se 

trata de buscar los números que tengan el mismo residuo que al dividir 20 entre 3 (números 

congruentes con 20 módulo 3).  

Los valores 20 y 3 que aparecen en la definici·n de la ñcarrera al 20ò son valores concretos 

de sendas variables de la situación matemática. Pueden cambiarse para dar origen a un 

cambio en el juego que provoca una modificación de la estrategia óptima (si bien el 

conocimiento matemático asociado sigue siendo el mismo).  

¶ Si n =  20 y m < 3, la estrategia ganadora consiste en decir, sea cual sea el número 

elegido por el contrincante, un número de la lista: 2, 5, 8, 11, 14, 17 y 20. 

¶ Si n = 45 y m < 7, la estrategia ganadora consiste en decir: 3, 10, 17, 24, 31, 38 y 

45. 

¶ Si n = 100 y m < 12, la estrategia ganadora consiste en decir: 4, 16, 28, 40, 52, 64, 

76, 88 y 100. 

Una variable de una situación adidáctica se llama variable didáctica si sus valores pueden 

ser manipulados (fijados o cambiados) por el profesor. Partiendo de un conocimiento 

concreto y de una situación adidáctica específica de dicho conocimiento, resulta que la 

modificación de los valores de las variables didácticas de esta situación adidáctica permite 

engendrar un tipo de problemas a los que corresponden diferentes técnicas o estrategias de 

resolución.  

Ahora puede decirse que aprender un conocimiento matemático significa adaptarse a una 

situación adidáctica específica de dicho conocimiento, lo que se manifiesta mediante un 

cambio de estrategia del jugador (el alumno) que le lleva a poner en práctica la estrategia 

ganadora u óptima de manera estable en el tiempo y estable respecto a los diferentes 

valores de las variables de la situación adidáctica en cuestión.  

 

                                                 
4 Se refiere a una analogía utilizada por Brousseau en donde modeliza a través de la teoría de juegos, el 

aprendizaje es entonces ñganarò el juego. 
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Sobre el precálculo 
 
Tradicionalmente el curso de precálculo es un repertorio de procedimientos y algoritmos 

provenientes esencialmente del álgebra y de la geometría analítica, tocando con mayor o 

menor énfasis el estudio de función, habitualmente sobre la definición de Dirichlet-

Bourbaki. La enseñanza tiende a sobrevalorizar los procedimientos analíticos y la 

algoritmización, dejando de lado a los argumentos visuales, por no considerarlos como 

matemáticos, entre otras causas. Es decir, la concepción que de la matemática se tenga, 

permea la de su enseñanza, independientemente de los estudiantes a los que se dirige. A 

ello se aúna el contrato didáctico establecido, que como parte de la negociación impide que 

el status del profesor sea demeritado, si éste no resuelve satisfactoriamente los problemas 

planteados en el curso; el recurso algorítmico permite subsanar decorosamente lo 

establecido en el contrato y "aligera", eliminando dificultades subyacentes al contenido 

matemático.  

La investigación sobre las premisas que sustenta la instalación de un lenguaje gráfico que 

permita el tránsito entre varios contextos ha sido reportada en (Farfán, 1997 y 2012; 

Cantoral y Farfán, 1998 y 2003). En síntesis hemos sostenido que para acceder al 

pensamiento y lenguaje variacional, elementos centrales del estudio del precálculo y 

cálculo, se precisa entre otras del manejo de un universo de formas gráficas extenso y rico 

en significados por parte del que aprende. El conocimiento de la recta y la parábola no 

resultan suficientes para desarrollar las competencias esperadas en los cursos de cálculo. 

En términos escolares existe la necesidad de modificar el curso de precálculo al inicio de 

los estudios universitarios y un diseño para la escuela lo presentamos en (Albert, Arrieta y 

Farfán, 2001). En lo que sigue expondremos grosso modo los elementos del análisis 

preliminar (en términos de ingeniería didáctica) así como los elementos sustantivos del 

diseño a fin de proporcionar un ejemplo de innovación para la escuela obtenida de la 

investigación en matemática educativa. 

¶ Estudio epistemológico. La naturaleza del concepto de función es en extremo 

compleja, su desarrollo se ha hecho casi a la par del humano, es decir, encontramos 

vestigios del uso de correspondencias en la antigüedad, y actualmente se debate 

sobre la vigencia, en el ámbito de las matemáticas, del paradigma de la función 

como un objeto analítico. Empero, el concepto de función devino protagónico hasta 

que se le concibe como una fórmula, es decir hasta que se logró la integración entre 

dos dominios de representación: el álgebra y la geometría. La complejidad del 

concepto de función se refleja en las diversas concepciones y diversas 

representaciones con las que se enfrentan los estudiantes y profesores. Una lista 

exhaustiva de obstáculos epistemológicos del concepto de función se encuentra en 

[Sierpinska A., 1992]. 
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¶ Estudio cognitivo. Los objetos inmersos en el campo conceptual del cálculo 

(análisis) son particularmente complejos a nivel cognitivo pues, como en el caso 

que nos ocupa, la función se presenta como un proceso cuyos objetos son los 

números; este mismo concepto deviene en objeto al ser operado bajo otro proceso 

como la diferenciación (o integración) y así sucesivamente. De modo que al iniciar 

un curso de cálculo el estudiante debe concebir a la función como un objeto y por 

ende susceptible de operación; de otro modo, ¿qué significa operar un proceso? En 

nuestras experiencias con profesores y estudiantes hemos constatado que si logran 

incorporar elementos visuales como parte de su actividad matemática al enfrentar 

problemas, no sólo manejan a la función como objeto sino que además transitan 

entre los contextos algebraico, geométrico y numérico versátilmente, es decir, si se 

tiene dominio del contexto geométrico/visual tanto en la algoritmia, la intuición 

como en la argumentación es posible el tránsito entre las diversas representaciones. 

El problema estriba en la dificultad cognitiva para adquirir maestría en el contexto 

geométrico, por ejemplo, en el plano de la argumentación es mucho más fácil 

mostrar la existencia de una raíz doble algebraicamente que geométricamente, por 

lo que se acude al refugio algorítmico fácilmente. 

A partir de estos elementos nos proponemos un diseño con el objetivo explícito de construir 

un lenguaje gráfico. La hipótesis central, después de un análisis socioepistemológico a 

profundidad como el que se desarrolla en (Farfán, 2012) consiste en asumir que: previo al 

estudio del cálculo se precisa de la adquisición de un lenguaje gráfico que posibilite, 

esencialmente, la transferencia de campos conceptuales virtualmente ajenos, a causa de las 

enseñanzas tradicionales, estableciendo un isomorfismo operativo entre el álgebra básica y 

el estudio de curvas, mejor aún, entre el lenguaje algebraico y el lenguaje gráfico.  

Esta hipótesis ha sido desarrollada tomando las dos siguientes directrices; en primer 

término se presenta la posibilidad de operar gráficas en analogía con los números o las 

variables, dando sentido a operaciones fundamentales tales como:  

 

¶ Ὢὼ  y  Ὢ ὼ Reflexión respecto del eje x y del eje y 

respectivamente. 

 

¶ Ὢὼ ὥ  y  Ὢὼ ὥ  con  ὥ π Traslación en la dirección del eje x. 

 

¶ Ὢὼ ὥ  y  Ὢὼ ὥ   con  ὥ π Traslación en la dirección del eje ώ. 

 

¶ ὥὪὼ Contracción o dilatación respecto del eje y. 

 

¶ Ὢρὼ Re flexión respecto de la recta ώ ὼ. 
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¶ 
ρ

Ὢὼ
 Invierte ceros en asíntotas y viceversa, y 

las abscisas tales que ȿώȿ ρ 
corresponderán con aquéllos donde ȿώȿ ρ 
y viceversa, dejando intactos los puntos 

sobre las rectas ώ ρ  y  ώ ρ. 
 

¶ ȿὪὼȿ   y   Ὢȿὼȿ 

 

Respectivamente reflexión de las imágenes 

negativas al simétrico positivo respecto del 

eje ὼ y reflexión de sustitución del lado de 

la gráfica con ordenadas negativas por la 

reflexión del lado de la gráfica con 

ordenadas positivas. 

 

 

El segundo aspecto relevante lo constituye la posibilidad de construir un universo amplio 

de funciones a partir de tres funciones primitivas de referencia: la identidad (Ὢὼ ὼ), la 

exponencial (Ὢὼ ὥ) y la sinusoidal (Ὢὼ ίὩὲ ὼ), todas ellas para construir las 

funciones elementales en el sentido de Cauchy. Respectivamente, ellas sirven para construir 

operando las gráficas a las funciones algebraicas, logarítmicas y exponenciales y las 

trigonométricas gráficamente. 

 

 

Imagen 2: Diseño de una ingeniería didáctica. 

 

En este acercamiento ha resultado importante plantear situaciones que involucren 

enunciados algebraicos que por su complejidad favorezcan el uso del lenguaje gráfico, por 

ejemplo la tarea: 

Resuelve la desigualdad  
ȿ ȿȿ ȿ

ȿ ȿȿ ȿ
Ὧὼ 
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es ampliamente desarrollada como estrategia de enseñanza en (Albert y Farfán, 1997). Para 

todo ello es necesario operar algebraicamente a fin de obtener la gráfica de las funciones 

involucradas para que finalmente sean comparadas y resolver de este modo los sistemas de 

ecuaciones a que haya lugar. Del mismo modo el buscar los extremos de funciones como 

  con a y b positivos, permite avanzar en la construcción del puente entre contextos, 

pues la tarea en este contexto sirve de guía a la sintaxis algebraica, de modo que ésta se 

refuerza en su significado. 

Describimos enseguida dos ejemplos: 

1. Resolución de la desigualdad  ὼς ὼ ς ὼ ρ 

 

Imagen 3. Resolución gráfica de desigualdades. 

 

En la imagen anterior pueden notarse las gráficas tanto de  Ὢὼ ὼς ὼ ς como de 

Ὣὼ ὼ ρ. El método consiste en encontrar los puntos de corte de ambas gráficas, es 

decir, donde la gráfica de la función cuadrática es igual a la gráfica de la función lineal: 

ὼς ὼ ς ὼ ρ. La importancia de estos puntos radica en que marcan un cambio en las 

imágenes de una función con respecto a la otra. Esto es, en el primer punto de corte entre 

las gráficas, ὼ ρ, las imágenes de la cuadrática pasan de ser mayores a ser menores que 

las imágenes de la lineal. En el segundo punto de corte, ὼ σ, las imágenes de la 

cuadrática pasan de ser menores a ser mayores que las imágenes de la lineal. Con este 

análisis es que se obtiene que en el intervalo abierto ρȟσ la gráfica de f(x) es menor que 

la gráfica de g(x), es decir, se cumple la desigualdad. 

 

 

 

 

 

Resolución gráfica de 

desigualdades

2( ) 2f x x x= - -

2 2 1x x x- - < +

1x=-

Por simple

inspección

( 1, 3)xÍ-

Igualando las 

expresiones dadas

2 2 1x x x- - = +

( ) 1g x x= +
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2. Resolución de la desigualdad ȿὼ ςȿ ȿὼ ρȿ 

 
Imagen 4. Resolución gráfica de desigualdades. 

 

En la imagen 4 pueden notarse las gráficas de ȿὼ ςȿ y de ȿὼ ρȿ . Al igual que en el 

ejemplo 1, el método para resolver la desigualdad consiste en encontrar el punto de 

intersección de ambas gráficas, específicamente, donde ὼ ς ὼ ρ. Dicho punto 

resulta relevante en tanto que determina un cambio en el comportamiento de las imágenes 

de una función con respecto a la otra. Es decir, en ὼ  las imágenes de ὼ ς pasan de 

ser mayores que ὼ ρ a ser menores. Por tanto, el intervalo donde ȿὼ ςȿ es mayor que 

ȿὼ ρȿ es Њȟ
ς
 . 

En síntesis estas son las premisas de nuestro acercamiento, cuyos ejemplos se expondrán en 

lo que sigue. Antes, es importante señalar que el desarrollo del pensamiento y el lenguaje 

variacional en los estudiantes precisa de procesos temporalmente prolongados a juzgar por 

los tiempos didácticos habituales. Supone, por ejemplo, del dominio de la matemática 

básica y de los procesos del pensamiento asociados, pero exige simultáneamente de 

diversas rupturas con estilos del pensamiento prevariacional, como el caso del pensamiento 

algebraico ampliamente documentado por Michelle Artigue (Artigue, 1998). Esa ruptura 

además, no puede ser sostenida exclusivamente al seno de lo educativo con base en un 

nuevo paradigma de rigor que se induce simplemente de la construcción de los números 

reales como base de la aritmetización del análisis, ni tampoco puede basarse sólo en la idea 

de aproximación, sino que debe ayudar también a la matematización de la predicción de los 

fenómenos de cambio (Cantoral y Farfán, 1998 y 2003). 
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Operaciones gráficas 
 

Creemos que es necesario rescatar algunos ñmecanismosò que permitan generar 

conocimiento y darles significado a ciertos contenidos matemáticos. En este sentido, es 

importante que los estudiantes logren un buen manejo del lenguaje gráfico y un pasaje 

fluido del contexto algebraico al gráfico. Con ello, estaremos proporcionándoles una base 

más sólida donde asentar otros conceptos de Cálculo, como por ejemplo, comportamiento 

de funciones, obtención de áreas, etc., y aportándoles herramientas que les permitirán una 

mejor comprensión y por ende, apropiación de conocimientos en niveles más abstractos. 

Con el manejo de este tipo de operaciones intentamos que los estudiantes se apropien de un 

manejo del ñlenguaje gr§ficoò que implica, por un lado, inducirlo a la ñsem§ntica gr§ficaò, 

es decir, a la construcción de significados previos de las operaciones gráficas; y por otro, a 

la ñsintaxis gr§ficaò, vale decir, a su simbolizaci·n respetando ciertas reglas. En este 

espacio presentamos sólo el estudio de una operación, sin embargo en (Farfán et al., 2000) 

pueden consultarse algunas otras. 

Estudio de 
)(

1

xf
 a partir de )(xf  

Para construir la gráfica del recíproco de una función, partiremos de xxf =)( , pues se 

considera que es reconocida por el alumno. Así, se intenta que, de un análisis exhaustivo de 

la construcción de 
x

1
, se logre la generalización a cualquier función mediante la detección 

de propiedades comunes. 

Partimos entonces, de la forma elemental xxf =)(  

Sus características son, entre otras: 

¶  Ὀέά Ὢ ᴙ 

¶ Es creciente, pues si ba<  entonces  )()( bfaf <  

¶ Es continua 

¶ Es simétrica respecto al origen de coordenadas, por tanto es 

una función impar, es decir que )()( xfxf -=-  ya  que )()( xfxxf -=-=-  

¶ )(xf  es positiva sí  0>x , es decir, 0)( >xf    sí y solo si   0>x  

¶ )(xf  es negativa sí  0<x  , es decir, 0)( <xf   sí y solo si 0<x  
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¶ 0)( =xf    sí   y solo si   0=x  

El identificar características de )(xf es relevante en cuanto se desea establecer cómo se 

modifican o conservan estas propiedades al calcular el recíproco de )(xf . 

a) Estudio de los puntos )1 ,1(  y )1,1( --  

Definimos 
)(

1
)(

xf
xg =  

 

¶ si 1)1(       1 =Ý= fx  

1
1

1
)1( ==g  

 

¶ si 1)1(       1 -=-Ý-= fx  

1
1

1
)1( -=
-
=-g  

 

 

 

 

Es decir, los puntos )1 ,1(  y )1,1( --  pertenecen tanto a la gráfica de  f  como a la de g. 

b) Estudio de puntos ( )1,0, Íba  

Para los puntos del intervalo )1 ,0( haremos las siguientes consideraciones: 

¶ Sean ( )1,0, Íba  de modo tal que 1<<ba  

 

 

 

 

 

 

 

 

como  )( aaf =  y bbf =)(  
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entonces )()( bfaf < , ya que )(xf  es creciente. 

¶ Pero,    
1

)(
a

ag = y 
b

bg
1

)( = . Si recordamos que 10 <<< ba  

     Y, si  dividimos por 0>a  las desigualdades no se alteran, por tanto: 

aa

b 1
1 <<  

Si dividimos ahora por 0>b  obtenemos: 

abab

111
<<  

 

¶ Además,    
b

b
1

1       1 <Ý<   

            Entonces   
ab

11
  1 <<  

            Es decir      )()(1 agbg <<   

            Por tanto )(xg  decrece y se ubica  

            por encima de 1=y . 

  

 

Como ejemplo calculemos algunos puntos para comenzar a trazar la gráfica: 

 

¶ 2

2

1

1
)(y               

2

1
)(                

2

1
===Ý= xgxfx  

¶ 3

3

1

1
)(y               

3

1
)(                

3

1
===Ý= xgxfx  

Si hacemos x cada vez más pequeño: 

 

¶ 100

100

1

1
)(y               

100

1
)(                

100

1
===Ý= xgxfx  

en general, para n cada vez más grande: 

¶           
1

1
)(y               

1
)(                

1
n

n

xg
n

xf
n

x ===Ý=
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Observamos que, a medida que )(xf  se hace más pequeño, )(xg  se hace más grande. Es 

decir, si hacemos tender x a cero, xxf =)(  también se acercará tanto como deseemos a 

cero, y por lo tanto, 
x

xg
1

)( =  tender§ a infinito, esto es, se har§ tan ñgrandeò como 

queramos. 

Tomemos ahora dos puntos de )(xf :  

( ))(, afa  y ( ))(, bfb  tales que ( )1,0, Íba  con    ba<   

entonces )()( bfaf <  

y, por lo visto anteriormente, )()( bgag >   

Además,    0>-ab y 0)()( <- agbg  

Efectivamente:  
( )

ab

ab

ab

ba

ab
agbg

-
-=

-
=-=-

11
)()(  

 
 

La pendiente de la recta que pasa por los puntos ( ))(, aga  y ( ))(, bgb  es: 

abab

ab

ba

ab

ab

ab

agbg
m

1

11

)()(
-=

-

-

=
-

-

=
-

-
=  

Conforme a y b sean más pequeños 
a

ag
1

)( =  y 
b

bg
1

)( =  serán cada vez más grandes. Por 

otro lado, el producto de ab también está acercándose a cero, por tanto, 
ab

1
 se está 

haciendo ñmuy  grandeò, es decir, este valor tiende a infinito (negativo). 
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Luego, como la pendiente de la recta secante a la gráfica de )(xg  es  
ab

1
- , esta recta se va 

haciendo cada vez más paralela al eje y a medida que nos acercamos a 0=x . Esto nos lleva 

a pensar que los puntos de la gráfica de )(xg  no atravesarán el eje vertical. Podemos 

deducir entonces que: 0=x  es una asíntota de la gráfica de 
x

xg
1

)( = . 

c) Estudio de puntos ( )+¤Í ,1,ba  

Ahora consideremos el intervalo ( )+¤,1  y sean ( )+¤Í ,1,ba  tales que: ba<<1  

Si dividimos por 0>a  las desigualdades no se alteran y obtenemos 

a

b

a
<<1

1
      

de igual manera, si dividimos ahora por 0>b  nos queda 

1
111

 <<<
abab

 

Luego,  

            aaf =)(  

                                     por tanto   )()(1 bfaf << ,   y   f   crece y se mantiene  

            bbf =)(           por encima de la recta 1=y  

 

            
a

ag
1

)( =  

                                     por tanto  1)()( << agbg ,  g decrece y se mantiene  

            
b

bg
1

)( =            por debajo de la recta 1=y  

Por otro lado, si ( ) 0)(       0
1

        0         ,1 >Ý>Ý>Ý+¤Í xg
x

xx , es decir, )(xg  se 

mantiene por encima de la recta 0=y , luego 1)(0 << xg   para todo  ( )+¤Í ,1x . 
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Anteriormente vimos que la pendiente de la recta que une dos puntos ( ))(, aga  y ( ))(, bgb  

es:             
abab

agbg
m

1)()(
-=

-

-
=  

 

 

 

Si ahora hacemos que a y b sean cada vez más grandes, es decir, que ambos tiendan a 

infinito, la pendiente de esta recta a la gráfica de Ὣὼ tenderá a cero, es decir, será cada 

vez más horizontal o paralela al eje x. Esto nos hace pensar que los puntos de la gráfica de 

)(xg no atravesarán la recta 0=y . Así, el eje x será una asíntota horizontal de la gráfica de 

)(xg . 

Del análisis de las características de )(xf , sabemos que f es una función impar. 

Como Ὣὼ  entonces Ὣ ὼ Ὣὼ de lo que concluimos que Ὣὼ es impar, 

por lo tanto, la gráfica de Ὣὼ es simétrica respecto al origen de coordenadas. 

Entonces, con lo estudiado hasta ahora, estamos en condiciones de trazar la gráfica 

completa. 

Gráfica de  Ὢὼ ὼ y de su recíproca Ὣὼ  . 

Recta secante a la 

gráfica de 

 

1=y  
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Analicemos ahora, la manera en que se puede construir la gráfica del recíproco de una 

función arbitraria a partir de su gráfica. Para ello utilizaremos los resultados que obtuvimos 

en el estudio del recíproco de la función elemental xxf =)( . 

Generalización de la construcción de )(

1

xf  a partir de cualquier )(xf  

1) Signo de 
)(

1

xf
 

Si   0
)(

1
        0)( >Ý>

xf
xf    

Si   0
)(

1
        0)( <Ý<

xf
xf  

Por tanto, el signo de 
)(

1

xf
es el mismo de f(x) 

2) Puntos invariantes. 

Sabemos que el recíproco de 1 es él mismo. 

Por lo tanto si 1)( =xf  para algún 1
)(

1
      =ÝÍ

xf
fDomx  

Lo mismo ocurre con ï1. 

xxf =)(  

x
xg

1
)( =

 

1=y  

1-=y  

Asíntota 

vertical 

0=x  

Asíntota 

horizontal 

0=y  
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En conclusión, los puntos de la forma (x , 1) y (x, -1) que pertenecen a la gráfica de 

)(xf , pertenecen también a la gráfica de 
)(

1

xf
. 

Todas las consideraciones anteriores quedan resumidas en la siguiente tabla: 

 

)(xf  Significado gráfico  
)(

1

xf
 Significado gráfico  Observaciones 

 

 

1)(0 << xf  

 

  

 

1
)(

1
>

xf
 

 

La gráfica de 

)(

1

xf
se halla por 

encima de la 

recta    1=y  

 

 
1)( >xf  

 

 

 

1
)(

1
0 <<

xf
 

 

La gráfica de 

)(

1

xf
se halla por 

debajo de la 

recta 1=y  y por 

encima del eje x 

 

 
0)(1 <<- xf  

 

 

 

1
)(

1
-<

xf
 

 

La gráfica de 

)(

1

xf
se halla por 

debajo de la 

recta    1-=y  

 

 
1)( -<xf  

 

 

 

0
)(

1
1 <<-

xf
 

 

La gráfica de  

)(

1

xf
se halla por 

encima de la 

recta 1-=y  y 

por debajo del 

eje x 

 

De la tabla anterior, se deduce la importancia de graficar las rectas 1=y  y 1-=y  pues, 

dan una primera aproximación de las regiones donde se encontrará la gráfica de 
)(

1

xf
 

 

3) Ceros de )(xf  

Si existe fDoma       Í , tal que    0)( =af entonces 
)(

1

af
 no está definida 

Por tanto, un cero de )(xf  se convierte en una asíntota de 
)(

1

xf
 

y=1 

y =0 

y=0 

y =-1 

y =-1 

y=0 

y =-1 

y =-1 

y=1 

y =0 y=1 

y=1 
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4) Asíntotas verticales de )(xf  

 

Si )(xf  tiene una asíntota vertical en algún x, entonces, )(xf  tiende a infinito. 

Por tanto, una asíntota vertical de )(xf  se convierte en un cero de 
)(

1

xf
 

 

 

 

 

 
 

 

 

5) )(xf  creciente o decreciente 

 

)(xf  es creciente sí y solo si, para todo     , fDomba Í tales que ba< , se cumple que 

)()( bfaf <  

luego, si      , fDomba Í  tales que , ba<  vimos que
)(

1
  

)(

1
 

afbf
<  por lo tanto, 

podemos concluir que: 

Si )(xf  es creciente  Ý 
)(

1

xf
 es decreciente 

 

 

 

Asíntota 

vertical 

 

 

Asíntota 

vertical 

1=x  

)(xf

 

)(

1

xf

 

Cero de  

)(

1

xf
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Análogamente,  

Si )(xf  es decreciente   Ý 
)(

1

xf
 es creciente 

 

6) Simetría respecto al eje y, es decir, )(xf  es una función par 

)(xf  es una función par, sí y solo si, para todo     fDomxÍ se cumple que 

)()( xfxf =-  

Vemos que 
)(

1

)(

1

xfxf
=

-
 y podemos entonces concluir lo siguiente: 

Si )(xf  es una función par, entonces 
)(

1

xf
 es una función par. Por lo tanto, 

)(

1

xf

también es simétrica respecto al eje y. 

 

 

 

 
 

 

7) Simetría respecto al origen de coordenadas, es decir, )(xf  es una función impar 

)(xf  es una función impar, sí y solo si, para todo     fDomxÍ se cumple que 

)()( xfxf -=- . 

 

creciente 

 

decreciente 

 

Funciones pares 
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Luego 
)(

1

)(

1

xfxf
-=

-
 y podemos entonces concluir que: 

Si )(xf es una función impar Ý
)(

1

xf
 es una función impar. Por lo tanto, 

)(

1

xf
también 

es simétrica respecto al origen de coordenadas. 

 

 

 

 

8) Continuidad de )(xf  

Que )(xf  sea una función continua en todo su dominio, no implica que 
)(

1

xf
 también 

lo sea. En efecto, puede ocurrir que: 

¶ )(xf  sea continua, como por ejemplo xxf =)( , pero su recíproca ser discontinua, 

tal es el caso de 
xxf

1

)(

1
= . Observemos sus gráficas: 

 

 

 

 

 

 

Funciones impares 
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¶ Puede ocurrir que tanto )(xf  como
)(

1

xf
 sean continuas en su dominio, como por 

ejemplo, xexf =)(  y xe
xf

-=
)(

1
. Observemos sus gráficas: 

 

 

 

 

En conclusión podemos asegurar que: 

¶ Si 0)( ¸xf , para todo      fDomxÍ , y  )(xf  es continua entonces 
)(

1

xf
 es 

continua. 

¶ Si 0)( =xf  para algún     fDomxÍ , entonces 
)(

1

xf
 es discontinua.  

 

9) Máximos y mínimos relativos de )(xf  

Recordemos que una función alcanza un máximo en ax= , si existe una vecindad V tal 

que para todo V Íx )()( xfaf ² . 

Luego, si existe fDoma  Í , tal que )(af  es un máximo relativo de f, siendo 0)( ¸xf

para todo V Íx , tendremos que 
)(

1

)(

1

afxf
<  en dicha vecindad. Por tanto, en ax=  , 

)(

1

xf
 presenta un mínimo relativo 

Observemos esto gráficamente. 
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Vemos que )(xf  presenta un máximo en 1=x , pues para los 1<x  , )(xf  es 

creciente, en tanto que para los 1>x , es decreciente. De lo analizado en los puntos 

anteriores, sabemos que 
)(

1

xf
, será decreciente para los 1<x  y creciente para los 

1>x . Luego, 
)(

1

xf
 presenta un mínimo en 1=x  

En conclusión: 

¶ Si  )(xf , con 0)( ¸xf para todo V Íx , presenta un máximo en ax= , 

entonces 
)(

1

xf
 tiene un mínimo en ax=  

¶ Si )(xf  presenta un mínimo en ax= , entonces 
)(

1

xf
 tiene un máximo en 

ax= , siempre que 0)( ¸xf para todo V Íx . 

 

10)  Concavidad 

 

El estudio de la concavidad de 
)(

1

xf
 no es trivial, y aquí sólo analizaremos algunos 

casos particulares, dejándole al lector la tarea de analizar con mayor profundidad. 

Tomemos, a modo de primer ejemplo, una función f cuya gráfica es: 

 

 

Máximo de )(xf  

Mínimo de 
)(

1

xf
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Observemos que )(xf  presenta un máximo en ax=  y, por consiguiente, es cóncava 

hacia abajo en las cercanías de este punto. Luego, por lo analizado anteriormente,
)(

1

xf
 

tendrá un mínimo en ax= , siempre que 0)( ¸xf para todo x que pertenezca a una 

vecindad de a, por tanto será cóncava hacia arriba en las inmediaciones de este punto, 

siendo su gráfica: 

 

 

 

De forma análoga, en un mínimo, )(xf  es cóncava hacia arriba, por tanto, 
)(

1

xf
 será 

cóncava hacia abajo, pues presentará un máximo. 

En otro tipo de funciones, no es tan evidente la relación entre la concavidad de la 

función y la de su recíproca, basta analizar la gráfica de la función h y la de su 

recíproca. 

 

 

 

 

 

 

Concavidad 

hacia abajo 

Concavidad 

hacia arriba 
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Observamos que, tanto )(xh  como su recíproca, son cóncavas hacia arriba, y que 

ninguna de las dos presenta un punto de inflexión, es decir, en punto donde cambien su 

concavidad. 

 

Ejemplo: 

A partir de este análisis, y a modo de ejemplo, proponemos el siguiente ejercicio. 

Hallar el recíproco de )(xf  a partir de su gráfica. 

 

 

 

 

 

 

 

 

 

Ceros de  

Máximo relativo de  

Mínimo relativo de  
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Consideramos, que la pertinencia de este tipo de problemas, respecto a su inclusión en los 

programas de precálculo, radica en que, dotar al alumno de un buen manejo del lenguaje 

gráfico, facilita la comprensión y apropiación de nuevos conceptos de cálculo. 

En particular, el estudio del recíproco de una función permite reflexionar acerca de ciertas 

nociones, como asíntotas, ceros, máximos y mínimos, continuidad y sobre lo que sucede 

con ellas al aplicar esta operación. 

Al resolver este tipo de ejercicios, el alumno se ve obligado a pensar qué sucede ante, por 

ejemplo, un cero o asíntota. Este hecho lo acerca a conceptos de límite y sucesiones, sin 

estar trabajando con ellos de manera explícita. Debe analizar lo que ocurre cuando )(xf  se 

hace cada vez más pequeña (cero), o cada vez más grande (asíntotas) y al aplicarle el 

rec²proco, manejar ideas de ñtiende a...ò, ñse acerca a...ò  Por tanto, contribuye a formar una 

ñbaseò donde sustentar nociones tales como límite, continuidad, máximos y mínimos, etc.  

inherentes al cálculo. El lograr un pasaje fluido y espontáneo entre estos dos lenguajes 

(gráfico y analítico), permite una mayor comprensión de las ideas subyacentes. 

 

Asíntotas de  

 

Mínimo relativo de  

 

Máximo relativo de  

 

Máximo relativo de  

Mínimo relativo de  
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Resolución de desigualdades 
 

Es innegable que la dificultad técnica que se presenta al resolver desigualdades obstaculiza 

su comprensión y su enseñanza reduciendo su presentación escolar a unos cuantos ejemplos 

ñcomplejosò a fin de completar el programa establecido. Por otra parte, las habilidades 

algebraicas y lógicas que desarrolla la minoría no contribuyen, substancialmente, a un 

posterior estudio del cálculo. Nuestra estrategia para abordar en la escuela este tema estriba 

en el cambio de centración del contexto protagónico de la discusión, es decir, iniciamos el 

tratamiento en el contexto gráfico haciendo una traslación hacia el contexto algebraico cuyo 

fin es el de apoyar argumentaciones o construcciones gráficas. A lo largo de esta sección 

encontrará gráficas que han sido creadas con una herramienta de apoyo, el software de 

graficación GeoeGebra, el cual es un software libre y dinámico multi-plataforma para todos 

los niveles de educación que une la Geometría, el Álgebra, la Estadística y el Cálculo, en 

las referencias bibliográficas puede encontrarse la dirección electrónica para descargarse.  

También involucramos el contexto numérico para conjeturar soluciones e ir estableciendo 

márgenes de aproximación que propician el fortalecimiento de la intuición numérica de los 

estudiantes. En lo que sigue veremos algunos ejemplos que el lector puede consultar en 

(Farfán, Albert y Arrieta, 2001), para mayores detalles. 

El problema de resolver una desigualdad de incógnita x, radica en encontrar todos los 

números reales que, al sustituirlos por x, verifican la desigualdad dada. Tales números son 

las soluciones de la desigualdad, ellos forman el conjunto de soluciones que generalmente 

es un intervalo. Hagamos una analogía con la resolución de ecuaciones. 

Resolver la ecuación  

3xï1 = 0 

es encontrar el valor de ñxò para el cual el t®rmino 3xï1 es nulo; el problema planteado en 

una gráfica se interpreta como el de encontrar la intersección de la recta y = 3xï1 con el eje 

x, esto se muestra en la siguiente gráfica. 
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Gráfica de y = 3x-1 

 

El valor de x requerido es , es decir, que para dicho valor el término 3xï1 se anula; en la 

gráfica, para ese valor de x, la recta y el eje coinciden, por tanto la solución se expresa 

como x = . 

Al  introducir el t®rmino ñdesigualdadò se introducen los s²mbolos ñ< ò (menor que), ñ > ò 

(mayor que), ñ ¢ ò(menor o igual que) y ñ ² ò(mayor o igual que), que permiten que la 

solución sea un número, como en el caso de las ecuaciones, o bien, un conjunto de números 

e incluso varios conjuntos. De modo que al solicitar la solución de la desigualdad 

3x ï 1 < 0 

observamos en la gráfica que para todos los números del eje x situados a la izquierda de  

(es decir, menores que ) los valores del término 3xï1 están por debajo del eje x (es decir, 

son menores que cero), por lo que la solución es un conjunto de números, a saber, el 

constituido por todos los números reales que sean estrictamente menores que . Así la 

solución es el intervalo (ï ¤, ), gráficamente se ve de la siguiente manera: 
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Solución gráfica de 3x-1<0 

 

Reflexionemos sobre el procedimiento anterior:  

Hemos establecido una comparación entre la gráfica de la recta y = 3xï1 y el eje x cuya 

ecuación es y = 0; la comparaci·n fue dada por el s²mbolo ñ < ò y nos preguntamos àa partir 

de qué número, la gráfica de la recta y = 3xï1 está por debajo de la gráfica de la recta y = 0? 

Hemos traducido ñ < ò, usado en la expresi·n algebraica por ñdebajo deò y se puede inferir 

la traducci·n de ñ >ò por ñarriba deò en el contexto gr§fico, del mismo modo en que la 

igualdad se traduce como intersección (coincidencia).  

De este ejemplo observamos que en general, a diferencia de las ecuaciones, al resolver una 

desigualdad nos vemos obligados a exhibir un conjunto de números y que en el contexto 

gráfico (que usaremos como ambiente de trabajo) resolver una desigualdad será encontrar a 

partir de qué número (sobre el eje x) la comparaci·n inducida por los s²mbolos (ñ< ò, ñ > ò, 

ñ ¢ ò, ñ ² ò ) da lugar a la comparaci·n (ñdebajo deò, ñarriba deò, ñdebajo de y en la 

intersecci·nò, ñarriba de, y en la intersecci·nò) de los lugares geom®tricos involucrados.  

 

 

 

 

 

Problema 1 

Resolver por el método antes usado la siguiente desigualdad 

 3ï2x Ó xï6 
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Graficamos las rectas y = 3 - 2x  y  y = x - 6 en un mismo plano cartesiano. 

 
Gráficas de las rectas y = 3 - 2x  y  y = x - 6 

 

La gráfica de y = 3-2x está por encima de la gráfica de la recta  y = x-6 hasta el punto de 

intersección cuya abscisa (es decir, x) es 3, después de tal valor la situación se invertirá; así 

que la solución es el intervalo (-Ð, 3]. 

 

1.- Resuelva las siguientes desigualdades: 

a) 2x + 7 > 3 Solución: el intervalo (ï2, ¤). 

 

b) 1 + 5x > 5 ï 3x 

 

Solución: el intervalo (
2

1
, ¤). 

c) x  >  1 ï x   >  3 + 2x       No tiene solución. 

 

d) 0 < 1 ï x  < 1 

 

Solución: el intervalo ( 0, 1]. 

 

Problemas  propuestos 
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Al graficar y =   y  y = 1 en un mismo plano cartesiano obtenemos una hipérbola cuyas 

asíntotas vertical y horizontal son x =   y   y =   respectivamente. 

  

Gráficas de las rectas y =   y  y = 1 

 

El punto de intersección entre la recta y la hipérbola es el punto de coordenadas (, 1), 

obtenido al resolver la ecuación  
ὼς

σὼρ
 = 1.  

La gráfica de y = 
x

x

+

-

2

3 1
 está por debajo de la recta para todos los valores de x, salvo los 

comprendidos en el intervalo (, ), es decir, la solución son todos los números del conjunto    

(-Ð,) ᷾ ( ȟЊ). 

Problema 2 

Resolver la siguiente desigualdad 

ὼ ς

σὼ ρ
ρ 
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Nótese que no hemos considerado al número , en ningún caso, ni para el conjunto solución 

ni para el conjunto que no lo es. Ello se debe a que  no forma parte del dominio de la 

función, esto es, no hay ningún valor asignado que provenga de una evaluación en x = ; 

luego, no es posible hacer ninguna comparación. De hecho, excluiremos del conjunto 

solución a todos los números que no pertenezcan al dominio de la función, en este caso  

aquellos para los cuales se tenga una división por cero. 

 

1.-Resolver las siguientes desigualdades. 

 

a)   -x + 1 

 

Solución: el conjunto [x1, -1) ᷾ x2, ¤)  

 donde x1 º 5.54138126; x2 º 0.54138126. 

 

b) ïx<  <ï 2x + 3 

 

Solución el conjunto (x1,x2) ᷾ x3 , x4)  

donde x1 º -6.31662479; 

 x2 º -2.870828693;  

x3 º 0.31662479; x4 º 0.8708286933. 

 

De los ejemplos anteriores se desprende una interrogante ¿por qué la gráfica de un cociente 

de rectas es una hipérbola? Responder a ello nos permite graficar dicho cociente sin 

recurrir, necesariamente a una calculadora para resolver este tipo de desigualdades. 

Consideremos a, b, c y d constantes de modo que la pregunta que hemos planteado es 

equivalente a la siguiente:  

¿Cuál es la gráfica de la función ώ  ? 

Problemas propuestos 
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Si acaso c  ̧0, b = d = 0, entonces ώ , cuya gráfica es una recta paralela al eje x, 

puesto que  es una constante. Pero si b o d no son ambas cero (a y c son diferentes de 

cero) la situación difiere, y el cociente puede expresarse como 

ώ
ὥ

ὧ

ὦὧὥὨ
ὧ

ὧὼὨ
 

que se obtiene al hacer la división 

 

 

 

Pero, ¿por qué ώ  es una hipérbola?  

Nuestro patrón asociado a una hipérbola es el de ώ  como se muestra en la gráfica.

 

Gráfica de  y =  

 

 

 

 

     a 

     c 

cx + d     ax  + b 

  -ax         -ad 

      c 

            b - ad 

       c 
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Si ahora recorremos la gráfica hacia la derecha o bien hacia la izquierda, esto es, y > 0 o y < 

0 unidades, obtendremos por ejemplo con y = 3 la gráfica siguiente.  

 

Gráfica de  y =  

 

Si y < 0, por ejemplo y = -3, entonces la gráfica se ve como sigue. 

 
Gráfica de  y =  

Y si estas hipérbolas las desplazamos hacia arriba o hacia abajo en w > 0 unidades, 

tendremos respectivamente.  
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Gráfica de  y = ύ 

En donde las asíntotas fueron modificadas por dichos desplazamientos. Así, en ώ  

las asíntotas son y =    y  x = . 

El factor , siendo una constante, modificará a la curva contrayéndola o dilatándola, 

pero sin alterar la forma esencial de la curva, salvo por el signo que, si es negativo, 

significará una reflexión respecto del eje x. 

 

 

1. Considere la función f definida por f(x) =   

i)     Trace la gráfica de f.  

ii )    Resuelva la desigualdad  

f(x) ² 1. 

 

Solución: (ï ¤, ï1) ᷾  [0, ¤). 

iii ) Resuelva la desigualdad  

f(x) ¢ ïx ï1. 

Solución: (ï ¤,
Ѝ

  ᷾(ï 1,
Ѝ

 

 

 

 

 

 

 

 

Problemas propuestos 

Problema 3 

Resolver la siguiente desigualdad gráficamente. Puede apoyarse de algún software 

de graficación. 

ρ

σ
ὼ ρ ȿὼȿ 
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 Resolvemos con ayuda de GeoGebra 

La desigualdad que nos planteamos resolver es ὼ ρ ȿὼȿ, misma que traducimos a la 

siguiente pregunta ¿Cuándo la gráfica de ώ ὼ ρ está encima o es igual a la gráfica de 

ώ ȿὼȿ?, para responder esta pregunta trazaremos ambas gráficas con ayuda de GeoGebra 

y observaremos detenidamente ambos comportamientos de la gráfica, con base en dichas 

observaciones y nuestros conocimientos argumentaremos la respuesta. 

Al abrir GeoGebra aparecerá una pantalla como la siguiente. En las referencias encontrará 

la dirección electrónica de una guía rápida para el uso de este software, debe de consultarla 

para que pueda realizar con éxito el ejercicio que aquí desarrollaremos. 

 
Imagen del área de trabajo de GeoGebra 

Graficamos en un mismo plano cartesiano a las funciones ώ ὼ ρ y y=ȿὼȿ. Para ello 

basta escribir estas expresiones en la barra entrada que se muestra en la imagen anterior y 
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presionar enter, y aparecerán las gráficas correspondientes en la vista gráfica y en la vista 

algebraica sus expresiones correspondientes. Tenga en cuenta que para la expresión valor 

absoluto deberá escribir en la barra de entrada lo siguiente y=abs(x).  

Las gráficas se verán como sigue: 

 

 

Gráficas de ώ ὼ ρ e y=ȿὼȿ 

 

Observemos con atención las gráficas y tengamos en mente nuestra pregunta ¿Cuándo la 

gráfica de ώ ὼ ρ (gráfica azul) está encima o es igual a la gráfica de ώ ȿὼȿ  (gráfica 

roja)?, en las gráficas se observa claramente que es un pequeño intervalo en dónde esto 

ocurre, a saber, en el determinado por los puntos de intersección de ambas gráficas, es 

decir, en este intervalo las imágenes de la gráfica ώ ὼ ρ son menores que las 

imágenes de la gráfica ώ ȿὼȿ. Al parecer ya tenemos asegurada nuestra respuesta, sin 

embargo nos falta dar los datos precisos de este intervalo, es decir qué valores lo 

determinan, para ello con ayuda del software determinamos dichos puntos de intersección 

(con la herramienta intersección de dos puntos), al trazarlos en la gráfica (vista gráfica) 

aparecen sus coordenadas en la vista algebraica. Así hallamos que las gráficas se 
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intersectan en  ὼ  y ὼ  .Tome en cuenta que los valores que escribe el programa 

son en decimales aproximados, por ejemplo, al dar las coordenadas de los puntos de 

intersección en el caso del punto B escribe B=(1.49,1.49), pero en realidad se trata de 

B=(1.5,1.5). Esto es un claro ejemplo de que no debemos de confiar totalmente en el 

software, a veces se presentan situaciones como éstas que podemos sortear con los 

conocimientos que poseemos, en este caso para corroborar los valores exactos, puede 

procederse algebraicamente.  

 
Vistas del área de trabajo de GeoGebra 

 

Toda vez corroborado los valores encontramos que la solución es el intervalo [ , ], se 

trata de un intervalo cerrado por que los extremos son parte de la solución, recordemos que 

se trataba de una desigualdad con el signo . 
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Solución gráfica de ὼ ρ ȿὼȿ 

 

De esta forma la respuesta a la pregunta ¿Cuándo la gráfica de ώ ὼ ρ está encima o es 

igual a la gráfica de ώ ȿὼȿ? Es el intervalo [ , ], lo que implica la solución de la 

desigualdad. 

 

 

 

 

 

 Resolvemos con ayuda de GeoGebra 

La desigualdad que nos planteamos resolver ahora involucra dos expresiones con valor 

absoluto, se trata de ȿὼ ρȿ ȿὼ υȿ, esta desigualdad se traduce en la pregunta ¿Cuándo 

la gráfica de ώ ȿὼ ρȿ está por debajo de la gráfica de ώ ȿὼ υȿ?, para responder esta 

pregunta procedemos como en los ejercicios anteriores con ayuda de GeoGebra (de no 

Problema 4 

Resolver la siguiente desigualdad: 

ȿὼ ρȿ ȿὼ υȿ 



 

44 

contarse con el software pueden esbozarse las gráficas con lápiz y papel), trazamos ambas 

gráficas y observamos detenidamente al mismo tiempo que hacemos conjeturas para dar 

respuesta. 

Las gráficas que deben obtenerse son las siguientes. 

 
Gráficas de ώ ȿὼ ρȿ & ώ ȿὼ υȿ 

 

Observamos que las gráficas se intersectan en A, y es precisamente a partir del punto de 

intersección cuando la gráfica de ώ ȿὼ ρȿ (gráfica azul) está por debajo de la gráfica de 

ώ ȿὼ υȿ (gráfica roja), esto significa que la solución de la desigualdad ȿὼ ρȿ

ȿὼ υȿ es el intervalo (-2,Ð), es abierto porque en x=-2 ambas gráficas tienen la misma 

imagen.  

 

 

 

 

 

Problema 5 

Resolver la siguiente desigualdad: 

ȿὼ σȿ ȿσὼ ρȿ

ȿςὼ ρȿ ȿσὼ ςȿ

ρ

ς
ὼ ρ 
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 Resolvemos con ayuda de GeoGebra 

La desigualdad a resolver nos plantea la pregunta ¿Cuándo la gráfica de ώ
ȿ ȿȿ ȿ

ȿ ȿȿ ȿ
 

está por debajo o es igual a la gráfica de ώ ὼ ρ?, procedemos a graficar ambas 

funciones en el mismo plano coordenado. 

 
Gráficas de ώ

ȿ ȿȿ ȿ

ȿ ȿȿ ȿ
 & ώ ὼ ρ 

Recordemos que la pregunta planteada es ¿cuándo la gráfica de la función  ώ

ȿ ȿȿ ȿ

ȿ ȿȿ ȿ
 (gráfica roja) está por debajo o es igual a la gráfica de la función ώ ὼ ρ 

(gráfica azul)? al observa la gráfica anterior encontramos que antes de x=-0.6, y después de 

x=3.9, que son las abscisas de los puntos de intersección, la gráfica roja está por debajo de 

la gráfica azul, y que en dichos puntos las imágenes de ambas son iguales. Cabe destacar 

que con ayuda de la herramienta ñpunto de intersecci·nò de GeoGebra se pueden 

determinar los valores de los puntos de intersección. El intervalo que da solución a la 

desigualdad 
ȿ ȿȿ ȿ

ȿ ȿȿ ȿ
ὼ ρ es ЊȟπȢφ᷾σȢωȟЊ . 
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Problemas de máximos y mínimos sin usar cálculo 
 

En general, cuando el modelo de un problema es un modelo cuadrático, tendremos como 

gráfica a una parábola que tiene un máximo o un mínimo según el signo del coeficiente de 

x
2
. Este máximo o mínimo coincide con las coordenadas del vértice.  

En forma general, una función cuadrática es de la forma  

f(x)=ax2+bx+c,  con        a Í 0;  

al completar el cuadrado obtenemos una expresión equivalente  

Ὢὼ ὥὼ
ὦ

ςὥ

τὥὧὦ

τὥ
 

Los parámetros  y  de esta función pueden identificarse como un desplazamiento 

horizontal y otro vertical respectivamente de la gráfica de la parábola   y = a x2. Ilustremos 

esta afirmación considerando dos casos, con a positivo y a negativo. 

Partimos de la parábola  y = a x2, como se muestra en la figura. 

 
Gráfica de y = ax2 
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Consideremos el caso en el que a > 0 y b < 0, veamos qué pasa con la gráfica de la función, 

en este caso consideramos a=1 y b=-2. 

 
Desplazamiento hacia la derecha (b<0) de y=ax2 

Ahora consideramos el caso en el que a > 0 y b > 0, veamos qué pasa con la gráfica de la 

función, en este caso consideramos a =1 y b =2. 

 
Desplazamiento hacia la izquierda (b>0) de y=ax2 
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El desplazamiento de la parábola hacia arriba o hacia abajo está en función del signo de       

4ac ï b2, si éste es positivo, el desplazamiento será hacia arriba, si 4ac ï b2 es negativo el 

desplazamiento será hacia abajo, a continuación se muestra este hecho gráficamente. 

 
Desplazamiento de la gráfica hacia arriba (4ac ï b2 > 0)  

 

 

 
Desplazamiento de la gráfica hacia abajo (4ac ï b2 < 0)  

 

 


